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1. Phys. A Math. Gen. 27 (1994) 6 4 2 1 4 3 2 .  Printed in the UK 

On representations of super coalgebras 

Andreas Huffmann 
Department of Mathematics. King’s College. Strand. London WC2R 2LS. UK 

Received I8 March 1994 

Abstract. The general structure of the representation theory of a Zx-graded coalgebra is 
discussed. The result contains the structure of Fourier analysis on compact supergroups and 
quantizations thereof as a special case The general linear supergroups sewe as an explicit 
illustration and the simplest example is canied out in detail. 

1. Introduction 

Although the theory of Fourier analysis on supergroups or related coset supermanifolds 
has received considerable attention, the results are still far from a systematic theory 
that extends the classical theory for Lie groups and symmetric spaces. Recent progress 
concerning spherical Fourier analysis on certain non-compact Riemannian super coset 
spaces has been made by Zirnbauer [1,2]. His work was directly motivated by the 
demands of supersymmetric field theoretical models for an electron moving in a disordered 
environment [3,4]. The peculiarities of these theories stimulated the desire for a better 
understanding of compact supergroups as well. These appear, for instance, as angle variables 
upon the introduction of polar coordinates in supersymmetric models. 

A systematic study of compact unitary supergroups finally led to the general setting that 
is to be presented in this paper. It is basically a smcture theorem for graded coalgebras 
with impact not only on supergroups but also on super quantum groups or graded Hopf 
algebras, respectively. The arguments are simple and were finally settled in the foundations 
on the level of Zorn’s lemma. After this work had been completed, Green’s treatment of 
locally finite representations came to my attention [5]. It contains the structure theorem, 
derived by different arguments without exploiting the possibility of a grading. 

The text falls into three major units. First, the general structure of graded coalgebras 
and comodules is discussed. This reveals the basic structure of Fourier analysis of 
graded coalgebras. The role of induced representations is outlined. Second, the coalgebra 
corresponding to locally finite modules of the general linear supergroup is  analysed, Kac 
modules, Kac filtrations and their role for the structure of its representations are discussed. 
Finally the general theory is illustrated by the simplest examples. Here a coalgebra related 
to the Lie superalgebra gI(1.1; C) is considered in detail. In spite of its very simple nature 
almost all general phenomena can be observed with a minimal computational effort. Contact 
is made with existing literature on gl(2, 1; C) and a summary is given. 

Although the results of section 2 extend further, the convention that the term ‘graded’ 
will always mean ‘&-graded’ is adopted as a framework. Since all objects come in a 
graded context the explicit annotation of ‘graded’ will be dropped unless in cases where some 
confusion may arise. For example ‘(semi)simple’ has the meaning of ‘graded (semi)simple’. 
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6422 A Huffmann 

If a simple comodule is required to be irreducible in the non-graded sense this will be 
emphasized by using 'absolutely simple'. Furthermore, a basis is to be considered as a 
homogeneous basis of some comodule and homomorphisms are homogeneous of degree 
zero. The terms 'comodule' and 'representation' will be used synonymously. 

Since the intention was not to extensively reproduce previously published material on 
Lie superalgebras, the text is kept informal at some stages. For instance root systems and 
weight bases are not discussed in detail and reference to the literature is given whenever 
these notions are needed to put a subject into a wider perspective. However, the basic line 
of thought is presented in a self-contained manner and should be readable without in depth 
knowledge of the vast literature on supergroups and superalgebras. 

2. Representations of graded coalgebras 

I first recall the most basic consequences from the definition of a coalgebra C .  These follow 
directly from its two structure homomorphisms, that is a coassociative comultiplication 
A : C + C Q C and a counit E : C + k ,  which is a mapping into the base field k .  
To be explicit, coassociativity means ( A  Q id)A = (id 8 A)A and the counit satisfies 
.(E Q i d )A  = .(id Q &)A = id ,  . being the multiplication with scalars. C is considered as 
a (right- or left-) comodule over itself, with structure map A : C --f C Q C. 

The coassociativity is responsible for the coalgebra being locally finite-dimensional [6] .  
That means, if x E C is arbitrary but fixed, then there is a finite-dimensional subcomodule V 
such that x E V c C. The simple proof is as follows. Let { b j t G ~  C C be a basis, A(bj) = xkaJ C j k  Q bk. Fix x E C. Write A ( x )  = cj 8 bj with J, C J finite, Coassociativity 
means x,E,I A(cj) 0 b, = ( A  8 id )A(x)  = ( id 0 A)A(x) = xkc,(xjGj, cj Q cjk) Q 4 .  
Hence the span of (cj]jG,, U ( x ]  is a finite-dimensional subcomodule of C .  

The existence of a counit implies that every subcomodule of C is contained in the 
span of its coefficients; in other words, a coalgebra is the direct limit of finite coalgebras 
formed by the coefficients of its finite-dimensional comodules. For that let ( u i } i E ,  be a 
basis of a subcomodule V c C and A ( s )  = xjG, uj @a,!. Then vi = ( . ( E  Q id)A)(uj) = 

The definition of a comodules structure map, say f3 : V -+ V Q C, forces V to be 
included in a direct sum of copies of C.  Injectivity is immediate from the left inverse of 
p ,  .(id Q &) f3  = id .  The fact that p is a comodule map is simply (j3 Q id)p = (id Q A)p 
where id 0 A is defined as the comodule structure on V Q C. It should be noted that 
this is not a tensor product of representations, which is not defined unless the coalgebra is 
endowed with a compatible algebra structure. For a finite-dimensional V, dim(V) = n,  it 
means an inclusion p : V - C" [6]. Moreover, all comodules are locally finite and the 
problem of finding all finite-dimensional representations has as its first step the question of 
how to decompose C. 

To make contact with the physical terminology one should imagine C as some sort 
of functions on a quantum semigroup. Passing to a quantum group in general requires 
enlarging C. This has to be done since the existence of an antipode demands the invertibility 
of mabices, which might be impossible within C itself. The natural approach seems to be 
Manin's construction of Hopf envelopes [7]. The fundamental problem is the Fourier 
analysis of C, which may drastically change in its nature with the passage to a Hopf 
envelope. This will appear explicitly in the discussion of the general linear Lie superalgebra. 

From the point of view of category theory, attempts to study representations lead to the 
investigation of injective objects. The structure theory of coalgebras appears to be a direct 

Cje, E(vj)a!. ,  , 
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generalization of the representation theory of finite groups. It is beautifully developed in 
Green’s work on locally finite representations [5 ] .  However, this aspect seems not to have 
been considered within the mathematical physics literature. For that a brief discussion will 
be given. It is based on Zorn’s lemma as an alternative to the approach in [51. 

For a C-comodule W let u(W) be its socle, that is its semisimple subcomodule. For 
every semisimple V let Fv be the family of comodules the socles of which are V .  FV 
has a partial ordering by inclusions. The following lemma gives the basic intuition about 
the representation theory of C. For its proof note that a homomorphism of comodules is 
injective if and only if its restriction to the socle is injective. 
L e m m  1. Let V be a semisimple C-comodule. The following assertions are equivalent and 
hold for every coalgebra. 

(i) FV has a greatest element. 
(ii) Every totally ordered subset of FV has an upper bound in Fv. 
(iii) There is a maximal element in Fv. 
(iv) There is a X E FV such that X C W always implies W cz X @ X’. 
(v) For every semisimple X let l x  E Fx be a fixed choice of an element satisfying (iv). 
Then for every comodule W one has W L) Iq(w).  

(iii) + (iv) Let X E Fv be a maximal element, X 
Pmoj! (i) + (ii) is trivial and (ii) + (iii) is Zorn’s lemma. 

W. Let X’ c W be a maximal 
complementary subcomodule to X in W. Then X‘ is also maximal complementary to 
V E X g W. Hence W/X’ E Fv.  But X E W/X’ via x H x + X’ and by maximality 
X = W/X‘. Thus 0 -+ X’ + W + W/X’ + 0 splits and W EX 63 X’. 

(iv)+(v)Foracomodule WletS : u ( W )  + W @ l , ( w ) b e g i v e n b y x ~  S ( x ) = ( x , x ) .  

2 W/U(W) @ L ( W ) .  Since x E u ( W )  maps to ( x ,  0) + S(u(W)) = (0, - x )  + 6(u(W)), 
which is in the image of I,,(w), it is possible to pass to the quotient with respect to W/u(W) 

(v) + (i) The last observation holds especially for all maximal elements in F, tw) ;  IC(w) 
is a greatest element. 

Property (ii) is immediately verified by constructing an upper bound as a quotient of 
the direct sum of all comodules of a totally ordered subset, i.e. by forming its direct limit. 

0 
The proof of lemma 1 is basically category theoretical and relies on the facts that 

comodules always have a socle and that factor comodules exist. In the language of 
category theory a comodule with the property (iv), i.e. a comodule that splits from every 
comodule that contains it as a subcomodule, is called an injective. Clearly any direct 
summand of an injective is also an injective. Using this terminology and given a full set of 
simple C-comodules FO choose a corresponding set of injective covers F ,  that is a set of 
undecomposable injective comodules the socles of which are in Fo. 

Observe that W 5 (W @ L ( w ) ) / W ~ ( W N  and by (iv). L(w) C (W @ L ( w ) ) / ~ @ ( W ) )  

and N ~t ZC<w). 

For every comodule p : V -+ V @ C there is a coefficient mapping 
@v : V * @  v + c 

(@v @ id) o (id @ f l )  = A O@V 

(1) 
by right linear extension of forms, @v(w@ U) = w(f l (u)) .  It follows that 

(2 )  
hence @v is a homomorphism of (right) comodules. From lemma 1. C is spanned by the 
coefficients of the full set of undecomposable injectives F 

C = C W @ I ) .  (3) 
I E F  
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Under favourable circumstances, e.g. if C is semisimple, there is a subfamily F' E F such 
that C = @ l G ~ 4 ~ ( I *  c3 I ) .  If furthermore ker(4,) = (01 for all I E F' this decomposition 
of C is the Peter Weyl lemma. 

Let a(I) = IO. Then there is a subfamily F' F such that 

Due to the grading, the multiplicities mi do in general not equal dim(Io). But, via 61, every 
copy of Io in C is contained in a copy of its injective cover. From (3) and lemma 1 it 
follows that 

c N $ m r l @ X  (5) 
I €  F 

where X is a subcomodule of C. Since o(X) = (01 by (4). 

c N $ m , L  (6) 
I E P  

This is Green's structure theorem for coalgebras, In particular C is itself injective. 
With the paradigm of compact Lie groups in mind this result can be seen as a 

decomposition of C in a direct sum of principal vector spaces of, loosely speaking, the 
centre of the dual algebra C*. As a corollary, for instance, there is always a well- 
structured theory of Fourier analysis on compact Lie supergroups or quantizations thereof. 
The failure of the Peter Weyl lemma for these may be looked at as the non-diagonalizability 
of their algebras of Casimir operators, the undecomposable injectives playing the role of 
simultaneous principal vector spaces. These are undecomposable as comodules but clearly 
decomposable as principal vector spaces of a given Casimir operator. 

Up to this point the implications are insensitive to any notion of a grading as long as 
the properties of the category of comodules that were essential in the proof of lemma 1 are 
not lost. Based on Schur's lemma and Burnside's theorem [8,9] it is possible to be slightly 
more explicit about this decomposition in the present &-graded context when working over 
an algebraically closed field. In this case the commutant of a simple comodule is either one- 
or two-dimensional. Its even part is proportional to the identity and its odd part is spanned 
by a square root of minus the identity. The odd part is non-zero if and only if the comodule 
is reducible in the non-graded sense. Hence the space of coeficients of a reducible graded 
simple comodule faces additional constraints. 

For a comodule W let W' be W with its grading reversed. Consider the simple C- 
comcdules modulo their grading and fix a family p of undecomposable injective covers 
with a distinguished grading such that each appears as a subcomodule of C. Let J$ be the 
subfamily of injective covers of absolutely irreducibles in k? = FlUF2. An inspection of 
Burnside's theorem [8] yields 

Proposition I .  A &-graded coalgebra C over an algebraically closed field decomposes as 

(7) 

A . I  

C N $(dim(u(Z)o)I @dim(u(Z),)I') @ @(idim(u(I))I) .  
I&, kii 

This decomposition has an interesting consequence. Since every comodule is contained 
in a direct sum of copies of C, undecomposable injectives come with precisely two distinct 
gradings, which are reverse to each other. 

A key role in the investigation of the structure of a given coalgebra is played by induced 
comodules. Suppose D is another coalgebra with comultiplication A' and counit E' such 
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that n : C + D is a surjective mapping of coalgebras, i.e. n is onto, A’o n = (n B n) o A 
and e’ o a = E .  For a D-comodule B : V + V B D let 

ind$(V) = { x  E V B Cl(B B id)(x)  = (id B (n B id )A)(x) ) .  (8) 

ind$(V) is a C-comodule with structure map 6 : ind$(V) + ind$(V) B C, 6 = 
(id B A)lindc,cv,. It is straightforward to see that 6 is well defined. In the present context 
it is important to understand that C N ind$(D) as C-comodules. To find this consider the 
mapping (a B i d )A  : C + D 8 C. It is again straightforward to show that the image of 
( a B i d ) A  sits within indg(D). Due toE’oa =E, .(&’@id) is a left inverse to ( n @ i d ) A .  
Hence C cf ind:(D). To show that this mapping is onto as well let (dj}jEl c D be a 
basis and A‘(dk) = E,,, dj B 0,’ for all k E J .  Then x = cj,, dj B x j  E ind$(D) is 
equivalent to (a B id)A(x’) = E,,, 0: B x j  for all k E J .  Consequently 

(n B i d ) A .  (E’ B i d ) @ )  = (a B i d )A  x E ’ ( d j ) x j  G, j 

- - x .  

Hence .(E’ B i d )  inveris (a @ id )A and C N ind$(D). If the condition E’ o n = E were 
dropped, (n 

Now any decomposition of D ,  especially that into undecomposable injectives D z 
$, m J V ,  yields a decomposition of C as 

id )A : C + ind$(D) would still be onto but in general not injective, 

C N @mu ind$(!,). (9) 

Since direct summands of injectives are obviously injectives, this implies in particular that 
induction carries injectives to injectives. The study of induced modules forms the basic 
task in the investigation of the structure of the representation theory of coalgebras. This 
task may be a very complex one in general. Even in the case of Lie superalgebras and 
related coalgebras it is therefore advisable to consider examples that come with additional 
structures within their induced modules. This happens for type-I Lie superalgebras where 
the additional strucmres are filtrations by means of Kac modules. 

3. The general linear supergroup 

The general linear supergroup offers an interesting example for an illustration of the general 
theory. Induction from the base Lie group comes with special filtrations that allow for some 
insight into the substructure of the corresponding coalgebra. From now on all constructions 
are meant to live over the base field of complex numbers unless otherwise mentioned. 

It is sensible to begin with polynomials. Let C ( p ,  q )  be the bialgebra that is generated 
by a supermatrix ((cj)) of dimension ( p  t q )  x ( p  + 4). The multiplication is meant to be 
graded commutative and the comultiplication comes from ordinary matrix multiplication as 
A@;’) = Ck ci  B e,”. The counit is defined from E ( c ~ )  = 6;’. 
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At the same time ((cj)) defines a comodule structure p : V V 8 C ( p , q )  on a 
p + q-dimensional graded vector space with respect to a basis ( e ; ]  by p(e i )  i- cjej @ ci ,  
the defining representation Consequently the k-homogeneous part C ( p .  q)k of C ( p ,  q )  is 
spanned by the coefficients of the comodule Vek. In particular C ( p ,  q )  n. @k>o C ( p .  q)n is 
a decomposition into finite-dimensional coalgebras. The transposition x 8 y  n (-l)lxllYly8 
x ,  for homogeneous elements x E V,,,, y E &, induces a representation of the permutation 
group of k objects on Vmk. Its enveloping algebra is the commutant of C ( p ,  4) ; .  Since 
the endomorphism ring of a semisimple module is semisimple this implies that C(p,  q ) k  is 
semisimple if the characteristic of the base field is either zero or exceeds #(&) = k!. This 
is in complete analogy to the case of polynomial representations of GL. [lo]. Furthermore, 
in characteristic zero, C ( p ,  q )  is semisimple. This theory of polynomial representations of 
the general linear superalgebra is worked out in detail in [ 111. It is worth to remark that the 
structure of this argument still holds for one parameter quantizations of C ( p ,  4). The major 
change is that the commutant of say the k-homogeneous part depends on the deformation 
parameter. If this dependence is reflected in defining relations that are polynomial in the 
parameter, inspection of its Killing form shows that the breakdown of semisimplicity is 
governed by zeros of polynomial equations in the deformation parameter. Hence one finds 
semisimplicity for polynomial representations of degree k in characteristic zero or greater 
than k! for all but finitely many values of the deformation parameter. Finally in characteristic 
zero a one parameter quantization of C(p ,  q )  is generically semisimple apart from countably 
many values of the deformation parameter. 

To pass to a supergroup, C ( p ,  q )  has to be enlarged to a Hopf algebra. To see how 
this can be done the inversion of supermatrices has to be considered. With respect to the 
natural block decomposition induced by the grading of V IT VO @ VI the formal inverse of 

reads 

It follows that the matrix of generators ( (c j ) )  is invertible as soon as det(A) and det(D) are. 
To obtain a Hopf algebra A(p. q )  with involutive antipode, C ( p .  q )  has to be localized at 
the monoid which is generated by det(A) and det(D). For notational convenience let 

A d  
E B  

( (+ - I  = ( ) . 
The structure of A(p, q )  can be analysed with the help of induced modules with respect 

to the coalgebra Ao(p, q )  E A(p, 0) 8 A ( 0 , q ) .  The matrix of generators of A ( p .  0) will 
be denoted by Ao. those of A ( 0 , q )  by DO. The projection x : A(p,q) -+ Ao(p.4) 
is defined componentwise by a(A) = Ao, x(D) = DO, x(B) = 0, a(C) = 0. 
Let B : V 3 V @ Ao(p,q) be a A&, q)-comodule and {e ; ]  c V a basis such 
that p(ei) = cjej 8 D(A0, Do);. Now x = Ciei 8 x i  E i n d ~ ~ ~ ; ~ ~ l ( V )  means 
(rr 8 id)A(x')  = xj D(Ao, Do): 8 x j .  This equation is straightforward to solve with 
the result x i ( A ,  B .  C. D )  = cj D(A, D)jFj(A-'B, P I C )  . Hence the elements of 
indA'P'q' (V) are parametrized as Ao(P.q) 

X(A,  B ,  c, D )  = 8 D(A, D);F~(A-~B,  D - I C )  (11) 
i.j 
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and dim(indAo(p,ql(V)) A(p.q) = Z2J"dim(V). The explicit realization of the structure map 

SV : i n d ~ ~ ~ ~ ~ ~ ( V )  -+ indtif;$(V) 0 A(p ,  q )  (12) 

reads 

Sv(x) = cei @ W I ,  D I ) : W Z  +hCz, Dz+ SIBZ):. A(Fk(F,  q ) )  (13) 
i d k  

with e = A-'B,  q = D-  'C and NU = (A2 + ~ C Z ) - ' ( B Z  + 4 1 0 2 ) .  A(q)  = 
( 0 2  + q1BZ)-'(Cz + q1Az). For the convenience of notation the first and second factor in 
the tensor product after application of the comultiplication are distinguished by subscripts 
and identity matrices are not written explicitly. 

There are two possibilities for similarity transformations, motivated by either 
distinguishing the variables 4 or q respectively. These arise from the identities 

A ( A  - BD-'C) = A(A-')  = A;'(d2 - &ql)-' (14) 
or 

Parametrizing 

it follows that 

with 

(21) 

The substructure of these comodules is partly accessible by looking at suitable analogues 
of parabolic subgroups. The grading itself suggests a natural choice that was used by Kac 
in his original work on the finite representations of Lie superalgebras. To see how this 
looks in the present context one has to consider coalgebras generated by either the upper 
or lower block triangular entries of the matrix of generators. Hence there are coalgebras 
A+/-(p,  q )  with projections x+,- : A(p,  q )  + A+/- (p.  q )  given by j?+/-(A) = A+,-, 
xt+(D) = Dt/-, z + ( B )  = B,, ir-(B) = 0, q ( C )  = 0, x-(C) = C-. These allow for 
the notion of primitive elements. Let y : W + W @ A(p, q) be a comodule. x E W is 
called primitive if (id @ n+)y(x)  E W c3 A+(p, q)  is independent of E+, antiprimitive if 
(id @ x - ) y ( x )  E W 0 A- (p ,  q )  is independent of C-. 

62 j v(x2(4=. 17)) = c'W(& - Dz+ ~iBz):A(x,k(t, a)). 
k 
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In order to find the (anti)primitive elements in the induced modules consider 

( id  @ x+)S:(x{(d, 0)) = E%%, 4): (id 0 r+)A(&t, r l ) )  (22) 
k 

and 

( i d @ x - ) & @ i ( t ,  r l ) )  = E W A z ,  D z ) ~  W @ ~ - ) A @ ( t ,  v ) ) .  (23) 
k 

I t  remains for us to solve the equations 

( id  @ r+)A(f+(F, q ) )  f+(A;:(B+* + f iD+z ) .  (D+z + VIB+?)- 'VIA+Z) 

= f + ( A ; h D + z -  D&iA+z) (24) 
and 

(id 0 Z-)A(f-(t, = f-((A-z + FiC-z)-ltiD-z, DIi(C-2 + qiA-2)) 

= f - (AI : t iD-* ,  DIiqi A - d .  (25) 
The result is immediate from the formal substitution of B+z = -{ID+z or C-z = -VIA-2. 
since the corresponding equations do  not depend on these variables 

f+(B, v )  = f+(O,  (1 - i7P)-'o) (26) f - ( 5 , 9 )  = f - ( ( I  -tq)-1t,o). 

Finally a general primitive element of i n d ~ ~ ~ ; ~ ~ ~ ( V )  has the form 

x + ( A ,  B ,  c, D )  = Eel @ D ( A ,  b-'); - qF)-'q) (27) 
i.1 

and a general antiprimitive element correspondingly 

&-(A,  B ,  c, D )  = Cej S T J ( ~ - ' ,  0); F!((I - tq ) - I t ) .  (28) 
i.1 

A short calculation establishes the relations 

A((1 - t q ) - ' t )  = &(I + &D;'qI)IBzD;' + (1 - tiqi)- 'Fi (1 + ?iBzD;')tDz 
(2% 

(30) 

(31) 

~ ( ( 1 -  ~ F ) - ~ v )  = IJZu + C ~ A ; ' F , ) { C ~ A ; ]  + (1 - v ~ ~ ~ ) - ~ v ~ ( I  + W ~ A ; ~ ) ) A ~ .  
Hence, using the parameterization 

x ( A ,  B ,  C, D) = c e i  . .  @'D(A, &I); x i ( ! ,  ( I  - qc)-'q) 
' # I  

it follows from equation (30) that a filtration of ind'$jl(V) is inherited from the expansion 
with respect to the composite variables (1 -qF)- 'q. That means for every j < p q  let Wj(V) 
be the subcomodule of i n d ~ ~ ~ ; ~ j l ( V )  spanned by all elements with xf of degree less or equal 
than j with respect to the entries of (1 - qk)- 'q.  Consequently 

(32) 
and from the above relations Wj(V)/ Wj-l(V) zz Wo(V@Vj) with q the Ao(p. q)-comodule 
spanned by the j t h  order monomials of (1 - qF)-'q. The invariant subspace Wo(V), 
corresponding to degree zero in (1 - qE)-'q, is spanned by elements of the form 

(0) C Wo(V) C WI(V) C . . . C Wpu(V) = indi::;$(V) 

X ( A ,  B ,  c, D )  = Cei @.(A, E-]); ~ { ( c ) .  (33) 
i , j  
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The only primitive vectors contained in Wo(V) are those with .$(E) independent of h .  
Obvious antiprimitive vectors in these representations are those with all x:  proportional to 
the highest power in the entries of e ;  however it may happen that there are more of them, 
implying that Wo(V) may be reducible but undecomposable. These comodules correspond 
to one type of Berezin's elementary representations [SI which are in turn equivalent to 
lowest weight Kac modules [12, 131. The irreducible ones correspond to typical irreducible 
modules in Kac's terminology. 

Analogously 

X(A.  B ,  c, D )  = C e i  o D(P, ,$((I - ~ q y - ' ~ ,  q )  (34) 
i.i 

leads to a filtration of indibf,i,(V) coming from the expansion with respect to the variables 
(1 - ( q ) - ' t .  The invariant subspace corresponding to degree zero is in this case spanned 
by elements of the form 

X ( A , B , C , D )  = C e i s ~ ( d - I , ~ ) :  x ; ( v ) .  (35) 
i . j  

These comodules correspond to the second type of Berezins elementary representations 
which are basically highest weight Kac modules. The only antiprimitive elements contained 
are those with x i ( ? )  independent of q. There are primitive elements with all x: proportional 
to the highest power in the entries of 11 and the comodules correspond to highest weight 
Kac modules of the general linear Lie superalgebra. Again these representations are typical 
in the sense of Kac if irreducible. 

To conclude this section, let V c A&, q )  be a subcomodule with its basis elements 
e; = Ei(Ao, DO). Then 

(36) C e ' ( e , ) D ( x ,  Y): = C E ~ ( I ,  I)D(X, Y): = E ~ ( x .  Y )  
i 

and as elements of A ( p ,  q )  the above choices of coordinates read either 

x(A, B ,  C, D )  C E i ( A ,  D(1 - v F ) )  xi( t1  (1 - q t ) - ' ~ )  (37) 

x ( A , B , C , D ) = C E t ( A ( l  - E q ) . D )  - h q ) - ] F , ~ )  (38) 

i 
or 

since A-' = A(l - t q )  and 8-' = D(l - t&). Here the notation x is abused to represent 
,(E' @ i d )x .  The explicit splitting into undecomposable injectives has to be derived from 
the information about the (anti)primitive elements and the associated filtrations, which is 
still a formidable task when considered in full generality. Introducing weight spaces and 
using Kac's results about Casimir elements it is easy to verify, that the elementary invariant 
subspaces Wo(V) split from ind;;&$(V) iff they are typical irreducible. However, in the 
atypical cases the corresponding undecomposable injective are strictly larger than these 
submodules as is to be illustrated below. 

4. Examples 

Finally the general theory is to be illustrated by simple examples. Fortunately the easiest 
case, i.e A(1, I), which describes a part of the locally finite modules of the Lie superalgebra 
gl(1, 1; C), shows already the general features without demanding involved computations. 
Therefore it is well suited for illustrative purposes. This should at the same time clarify 
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Therefore it is well suited for illustrative purposes. This should at the same time clarify 
confusions that arose in the literature concerning Fourier analysis on the unitary supergroup 
U(1,1) [141. 

To begin with, the underlying bosonic coalgebra A&, 1) is generated by two 
independent bosonic variables A0 and Do and their inverses. The decomposition of Ao(1,I) 
corresponds to its Z x Z grading. The simple comodules V,,,,n, are one-dimensional and 
labelled by two integers n1.n~. As a basis of Vn,,n2 within Ao(1, 1) choose A;t'D? E 

are written as 
Adl ,  1). With respect to the parameterization (37), elements of ind,o(i,l,(Vn,,.2) AU 11 c A(p,  q )  

% ( A ,  B ,  C,  D )  = k " ' D n 2  X2((1 - fq)-'f, a). (38) 
The primitive vectors in this representation are given by 

x + ( A .  B. C .  D )  = A"'B-"' F+((1 - q f ) - ' q )  (39) 

(1 - qC)"1'"2F+(q). (40) - - A-ntDnz 

Obviously the cases nl + nz = 0 bear a significant difference compared to n, + nz # 0; 
all primitive elements live inside the elementary subcomodule which as a consequence 
cannot split from the induced representation. Hence nt + n2 = 0 marks four-dimensional 
injective modules that extend one-dimensional irreducible representations, which are atypical 
in Kac's terminology. Their Jordan Holder sequences have length four. In the case of 
n l + n ~  # 0 the comodule indi$!i)(Vn,,n>) splits into the direct sum of two typical irreducible 
representations spanned by either the elements 

y;""'(A, B ,  C, D )  = x-"'D" - q 
yl''n2(A, B ,  C, D )  = A-"IDnz - 1 

$ , " 2 ( ~ ,  B ,  c, D )  = 6 - n i p i .  ( 1  - ,,C)ni+nz 

$"*'(A, B,  C, D )  = A-"'Dn2 * f 

y;"""(A, B ,  C, D )  = A-"lD" . q f .  

(41) 

(42) 
or 

(43) 

. (1 - (nl + n 2 ) r l l )  
- - i - n l  DO? 

(44) 

(45) 
This completes the explicit construction of the Fourier analysis of A(1. 1) and, by 

specialization, that of the compact unitary supergroup U(1. 1). It is easy to verify explicitly, 
that the standard quadratic Casimir element of U(gI(1, 1; C)) is proportional to the identity 
on the two-dimensional injectives corresponding to nl + nz # 0 and falls into two one 
dimensional and one two-dimensional Jordan blocks when acting on one of the four- 
dimensional injectives with nl + n2 = 0. The latter are all degenerate and form principal 
vector spaces that extend the kernel of the Casimir operator. 

The next step should be an investigation of A(2, I ) .  Since a lot has been published about 
the Lie superalgebras gl(2, 1; C) and s1(2,1; e), respectively, this case will be treated by an 
informal discussion of its features, relating it to the literature. The structure of the induced 
modules is slightly more involved than in the A(1, 1) example. In terms of elementary 
representations the Kac filtrations of the induced comodules have four composition factors. 
The introduction of weights and inspection of those of the primitive elements shows that 
reducible elementary representations always occur in pairs as composition factors of induced 

respectively. In the case of nl + nz  = 0 the basis vector y3 may be replaced by 
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representations. This leads to a picture that is very similar to the results concerning 
A( I .  I ) .  Indecomposable injectives are either typical irreducible representations or they 
extend atypical irreducible representations and then have Kac filtrations of length two. 
These results are contained in reference [15], where they were derived in a Lie superalgebra 
context, without realising that the matter of investigation was the coalgebra encoding the 
locally finite representations. 

5. Conclusion 

The representation theory of graded coalgebras has been discussed, in particular shedding 
some light on the role of atypical irreducible representations of type-I Lie superalgebras. 
The basic problem for further advances is the classification of their injectives. It would be 
interesting if that could be carried out at least for all A ( p ,  9). Partial results come from 
the construction of the (anti)primitive elements in induced representations. Others can be 
deduced from Kac’s original work on the characters of simple Lie superalgebras, especially 
to obtain information about the blocks [5 ]  of, e.g., A ( p ,  4). One might speculate as to 
whether the injective comodules of A ( p .  q )  could be be characterized by the property to 
have Kac filtrations by means of both types of elementary representations, as is in the case 
with A ( 1 ,  1) and A ( 2 ,  1 ) .  If this is not the case, a counterexample would be of interest. I 
hope to come back to these questions once the details piece together to provide satisfying 
additional insight. 
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